
International Journal of Research in Advent Technology, Special Issue, March 2019
E-ISSN: 2321-9637

Available online at www.ijrat.org

89

Pros & Cons of Partial Redundancy Elimination
Algorithms

RAHIBB1, Dr. S SARALA2

Research Scholar1, Assistant Professor & Supervisor2

*Department of Information Technology
*Bharathiar University, Coimbatore, India

rahibb007@gmail.com1, sarala.bu@gmail.com2

Abstract-Partial Redundancy Elimination is an optimization method that eliminates expressions that are redundant
on some program execution paths but not necessarily all program paths in a program. In this paper we try to
discuss pros and cons of two well known simple algorithms for Partial Redundancy Eliminations. But both the
algorithms do not give much importance for eliminating edge splitting, even though the edge splitting is much more
expensive than inserting a computation at a node which is already exists in a data flow graph. In this paper we
suggest the possibilities for eliminating edge splitting as far as possible to make both the algorithms more compact
and attractive.

Keywords: Partial Redundancy Elimination, Data Flow Graph, Availability, Anticipability, Safe Partial
Availability, Safe Partial Anticipability, E_path suffix.

1. INTRODUCTION

Partial redundancy elimination (PRE) is a program
transformation that removes op ll. erations that are
redundant on some execution paths, but not aSuch a
transformation requires the partially redundant operation
to be hoisted to earlier programpoints where the
operation’s value was not previously available. A Partially
Redundant Expression(PRE) algorithm is a compiler
optimization technique for changing partial redundancy of
an expression in a DFG into fully redundancy and
eliminate the redundancy. A PRE algorithm based on safe
insertions is considered to be optimal if no other PRE
algorithm which uses safe insertions gives a DFG which
contains fewer computations along any path.
Morel And Renvoise (MRA)[1] proposed a bidirectional
data flow analysis algorithm to eliminate partial
redundancies which does not eliminate all partial
redundancies in a program, and it lacks both
computational and life time optimality as well. Since
MRA fails to split edges, optimization is not possible in
many loops. Even though Dhamdhere through Edge
Placement Algorithm(EPA) does insertions both in nodes
and on edges in DFG [2], he could not completely
eliminate redundant code motion. EPA does not provide
life time optimality in many cases.

2. PRE ALGORITHM BY VINEETH KUMAR

 Vineeth Kumar’s algorithm called “a simple, pragmatic,
and provably correct algorithm” [3] for PRE is really
simple, and computationally and lifetime optimal. The

algorithm assumes that all local redundancies are already
eliminated by some standard techniques for common
subexpression elimination on basic blocks[4]. The
algorithm is based on the concepts of availability,
anticipability, safe partial availability, and safe partial
anticipability.

The Table 1 summarizes the data flow properties and
equations of the algorithm. Let e be an expression in a
nodei of a data flow graph G. The local data flow property
ANTLOCi represents a locally anticipated upwards
exposed e in nodei, COMPi represents a locally available
downwards exposed e in nodei, and TRANSPi reflects the
absence of assignments to the operand(s) of e in nodei.
Global properties of availability, anticipability, safe partial
availability, safe partial anticipability are used to collect
global information. INSERTi and INSERT(i,j), identify e
to be inserted in nodei, and on edge(i,j) respectively, and
REPLACEi identifies e to be replaced in nodei with a
temporary variable, say t.

Table 1 : PRE: a simple, pragmatic, and provably
correct algorithm

Local data flow properties

ANTLOCi : nodei contains a locally
anticipated upwards exposed e.

COMPi : nodei contains a downwards
exposed e.

TRANSPi : nodei does not contain an
assignment to any of the

International Journal of Research in Advent Technology, Special Issue, March 2019
E-ISSN: 2321-9637

Available online at www.ijrat.org

90

operands of e.
Global data flow Properties
AVIN i/AVOUTi : e is available at the entry/exit of

nodei .
ANTIN i/ANTOUTi : e is anticipated at the entry/exit of

nodei .
SAFEINi/SAFEOUTi : e is safe at the entry/exit of

nodei.
SPAVINi/SPAVOUTi : e is safe partially available at

the entry/exit of nodei .
SPANTINi/SPANTOUTi : e is safe partially anticipated at
the

entry/exit of nodei .
REDUNDi : e is redundant at the entry of nodei.
SPREDUNDi : e is safe partially redundant at the

entry of nodei.

ISOLATEDi : e is isolated in nodei.

Data flow equations

A. An Example

Fig.1(a) shows a DFG with 6 nodes, and Fig.1(b) is DFG
after applying the PRE algorithm. Here the algorithm splits the edges
(n2,n4) and (n2,n5) for inserting a node in each edge with the equation:
INSERT(i,j) = ¬SPAVOUTi.SPAVINj.SPANTINj. But edge
splitting is much more expensive than inserting a computation in
an existing node. But the algorithm inserts a computation for an

expression in a nodei only if COMPi is true:
INSERTi=COMPi.SPANTOUTi(¬TRANSPi+¬SPAVINi).In this
example COMP2= False. But if insertion is done at the node n2, the
edge splitting can be eliminated as shown in Fig.1(c).

(a) before PRE Algorithm

(b) after PRE Algorithm

(c)after elimination edge splitting

Fig.1. Partial Redundancy Elimination

3. AN E-PATH_PRE ALGORITHM BY DM

DHAMDHERE

DM Dhamdhere presented a PRE algorithm titled “E-
Path_PRE – Partial Redundancy Elimination Made
Easy” [5]. The algorithm first identifies the insertion
points at nodes and on edges and then identify the saves
points, and finally the redundant occurrences of an
expression for replacement. The Table 2 summarizes the
data flow properties and equations of the algorithm. Let e
be an expression in a nodei of a data flow graph G. The
local data flow property ANTLOCi represents a locally
anticipated upwards exposed e in nodei, COMPi

International Journal of Research in Advent Technology, Special Issue, March 2019
E-ISSN: 2321-9637

Available online at www.ijrat.org

91

represents a locally available downwards exposed e in
nodei, and TRANSPi reflects the absence of assignments
to the operand(s) of e in nodei. Global properties of
availability, anticipability and E-path suffix are used to
collect global information. INSERTi and INSERTi,j
identify e to be inserted in nodei, and on edge(i,j)
respectively, and SAVEi identifies the node bi in which e
should be saved.

Table 2 : E-PATH PRE

Data flow equations

AV_INi = ∏□ϵ□□□□(□) AV_OUTp
AV_OUTi = AV_INi.TRANSPi +
COMPi ANT_INi =
ANT_OUTi. TRANSPi+
ANTLOCi
ANT_OUTi = ∏□ϵ□□□□(□) ANT_INs
EPS_ INi = ∑□ϵ□□□□(□)(AV_OUTp+
EPS_OUTp).ANT_INi.¬AV_INi EPS_OUTi =
EPS_ INi. ¬ANTLOCi
REDUNDi = (AV_INi + EPS_ INi).ANTLOCi
INSERTi = ¬AV_OUTi. .¬EPS_OUTi.
∏□ϵ□□□□(□) EPS_ INs INSERTij =
¬INSERTi ¬AV_OUTi. .¬EPS_OUTi.
EPS_INj
SA_OUTi = ∑□ϵ□□□□(□)(EPS_ INs+ REDUNDs+ SA _INs).
AV_OUTi
SA _INi = SA_OUTi. ¬COMPi
SAVEi = SA_OUTi.COMPi¬(REDUNDi. TRANSPi)

A.An Example
Consider the control flow graph of Fig.2(a) consisting of 6
nodes. Here the E_Path_PRE is n1-n3-n6. So the
E_PATH_PRE algorithm saves the expression a+b at n1
in a temporary variable t and replaces it in the node n6
with t. Since
∏□ϵ□□□□(□□) EPS_ INs = False for the node n2,

insertion of the computation at node n2 is not possible
according to the E_Path_PRE algorithm. But insertion on
the edge (n2,n3) is possible since INSERT23 is true as
shown in the Fig.2(b). Here itself if the insertion is done at
the node n2, the edge splitting can be eliminated as shown
in Fig.2(c).

Fig.2(c). According to the Lemma 3: ”An expression e in
node bj is deleted if and only if e is available at entry to bj
in the optimized program”. In Fig.2(c) the expression a+b
is available at the entry of nodes n4,n5 and n6 , and hence
the expression a+b from them are deleted. Insertion at
node n2 also replaces isolated expressions from the nodes
to some extend without sacrificing the computational and
life time optimality of the E_Path_PRE algorithm. The
expression a+b at nodes n4 and n5 in Fig.2(a) are the
isolated expressions because the E- pth PRE algorithm
cannot form E_paths for them. However, they are deleted
by inserting the expression at n2 as shown in Fig.2(c), a
bonus.

(a) before PRE Algorithm

(b) after PRE Algorithm

International Journal of Research in Advent Technology, Special Issue, March 2019
E-ISSN: 2321-9637

Available online at www.ijrat.org

92

(c) after eliminating edge splitting
Fig.2. Partial Redundancy Elimination

4. CONCLUSION

A Simple Algorithm for Partial Redundancy Elimination
called “PRE: a simple, pragmatic, and provably correct
algorithm”., by Vineeth Kumar, YN Srikant and Priti
Shankar, and an E_path_PRE algorithm, by DM
Dhamdhere do not take care of eliminating edge splitting
much. In this paper we suggested a method for avoiding
edge splitting as far as possible to make the PRE
algorithm more compact without sacrificing the
algorithm’s computational and lifetime optimality with the
help of 2 examples.

It is already shown by Vineeth Kumar and DM
Dhamdhere that the algorithms given by the papers [1],[4],
and [6-10] have one or more of the problems of redundant
code motion, unremoved redundancies, or limited
applicability due to reducibility restriction of the control
flow graph.

REFERENCE

[1] E. Morel and C. Renvoise, “Global optimization by
suppression of partial redundancies,”
Communications of the ACM, vol. 22, no. 2, pp. 96-
103, 1979.

[2] D. M. Dhamdhere. A fast algorithm for code
movement optimization. SIGPLAN Notices, 23(10):
172–180, 1988.

[3] V. K. Paleri, Y. N. Srikant, and P. Shankar, “Partial
redundancy elimination: a simple, pragmatic, and
provably correct algorithm,” Science of Computer
Programming, vol. 48, no. 1, pp. 1-20, 2003.

[4] A.V. Aho, R. Sethi, J.D. Ullman, Compilers:
Principles, Techniques, and Tools, Addison-Wesley,

[5] D. M. Dhamdhere. E-path PRE—partial redundancy
elimination made easy. ACM SIGPLAN Notices,
37(8): 53–65, 2002.

[6] D. M. Dhamdhere. Practical adaptation of global
optimization algorithm by Morel & Renvoise.ACM
Transactions on Programming Languages and
Systems, 13(2):291–294, 1991.

[7] D. M. Dhamdhere and U. P. Khedker. Complexity of
bidirectional data flows. Proceedings of Twentieth
annual symposium on POPL, pages 397–408, 1993.

[8] D. M. Dhamdhere and H. Patil. An elimination

algorithm for bi-directional data flow analysis using
edge placement technique. ACM TOPLAS,
15(2):312–336, 1993.

[9] D. M. Dhamdhere, B. K. Rosen, and F. K. Zadeck.
How to analyze large programs efficiently and
informatively. Proceedings of ACM SIGPLAN’92
Conference on PLDI, pages 212–223, 1992.

[10] V. M. Dhaneshwar and D. M. Dhamdhere. Strength
reduction of large expressions. Journal of
Programming Languages, 3:95–120, 1995.

